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Abstract We investigate the role of fluctuations in fragmentation processes using a 
simple analytic method to  verify the stability of the mean-field similarity solution. For 
the fragmentation process which slows down with decreasing fragment size. the cascade 
becomes self-averaging in the late stages of branching. For the fragmentation which 
speeds up with decreasing fragment size, fluctuations dominate. In both cases the 
deviation from the mean-field solution is neither Gaussian nor symmetric. The steady- 
state regime in the presence of an external source is investigated and compared with 
the above results. Some exact solutions are obtained for the case of homogeneous 
fragmentation and for the discrete Yule-Ferry cascade process of decay into two equal 
fragments. The mnnection of the h e t i c  method with the combinatorial-type analysis of 
branching is indicated. Applications are made to the process of phonon decay. 

1. Introduction 

In what follows we address some problems related to the role of fluctuations in 
cascade-like phenomena [1,2]. We investigate the stability of the mean-field solutions 
in fragmentation [2,3] with respect to fluctuations, develop the picture of the steady- 
state regime of fragmentation, and solve a sample problem to indicate a possible 
mapping between the combinatorial description [4-61 of the tree process and the 
kinetic approach. We also discuss the physical realization of the cascade process by 
studying phonon decay [7,8]. 

In cascade-like phenomena the appearance of self-averaging (and the time 
required for this) or, in contrast, the appearance of non-self-averaging (and the 
amplitude of fluctuations) have not been addressed so far in detail. We think there 
is a need for a quantitative description. This is the motivation of the present work. 

For brevity we denote by the phenomena of fragmentation an inter-disciplinary 
approach for describing many different physical systems. Generally speaking, it 
includes any kinetic process with scattering, decay, breaking, or splitting of an initial 
state into two (or several) new states (fragments), etc. A characteristic feature of 
any cascade process is that the fragments then proceed independently and in the 
same fashion, i.e. decay to smaller pieces. This is therefore a linear system with the 
generic feature known as ultrametricity [9]. We may cite phonon down-conversion 
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in solid state physics [7], particle decay in nuclear physics [lo], radiation disrupture 
of condensed matter [6], cosmic showers [11], atomic collision cascades [E] ,  neutron 
noise in a multiplying medium [ll], electron transport and even cell division [ll] as 
examples. 

It is rather obvious that fluctuations are inherent in any fragmentation process: 
for any given realization the probability of the distribution over fragment sizes, say, 
at some late stage of the process is the result of the repetition of numerous breakups, 
each of them being weighted with the cross-section of the single act of decay. If 
this cross-section is not somehow peaked in a deterministic way-if each decay 
corresponds to the breakup into two fragments of comparable size (energy)-the 
probability distribution with a significant width would be predetermined just by the 
spread of the very first decay act. 

Thus, the important issue is related to the information that one can extract from 
the study of the decay products of single species. We address this problem in section 2. 
The averaging over many realizations is formulated in section 3 as the steady-state 
regime. Thepossibility of having a steady-state solution is not obvious from the very 
beginning, since the breakup probability may depend on the current fragment size 
(energy) in two qualitatively different manners: the decay may either slow down or 
speed up with diminishing fragment size. Here the discrete model of the YuleFery 
cascade [ll] reconsidered by some of us [13] proves to be useful for understanding the 
convergence of the probability distribution to the steady state. In section 4 we discuss 
the correspondence between the combinatorial approach along a tree and the kinetic 
process developing along the same tree. For the simple discrete model [5,6] the 
one-to-one equivalence can be found, unlike the case of more complicated situations. 
In section 5 we apply the formalism of section 2 to the process of phonon frequency- 
down conversion in the simplest homogeneous case. Section 6 briefly summarizes the 
resul1s. 

S E Esipov et a1 

2. Fragmentation 

In this section we consider the typical example of the decay process-the 
fragmentation model by Kolmogorov-Filippov studied in [l-31. Let us introduce 
the kernel K(z, y) describing the rate density of splitting of the initial state y into 
two fragments of sizes z and y - z; the total mass (energy) is thus conserved. We 
define the conditional probability (with continuous argument z )  W (  N ,  z ,  111, xo, to )  
of having N fragments of size z at time t given there was one initial 'fragment' of 
size xo at time to. For the case of binary fragmentation (see [14] and appendix B) 
the kernel K ( z , y )  in [2,3] was taken to have the form 

and the so-called mean-field solution was obtained, i.e. the Boltzmann equation for 
the first moment 

I C ( X ,  y) = y@ (2.1) 

(N(Z,"o,  0) = N ~ ~ ( N , ~ , t I l , ~ O > O )  
N 

i.e. the equation 

a , ( N ( z ,   EO,^)) = - ( N ( + ,  zo, t))  izn dy WY, zO)+2/"dy I ~ ( Y ,  + o ) ( N ( + ,  Y ,  1 ) )  

(2.2) 
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was solved analytically in terms of the Kummer function 

The dependence of kernel (2.1) upon p gives the relaxation rate of mass (energy) y 
to be 

Y dy Y -  = -70 - - y i  dx K(x,y)  = - Y @ + ~  

and describes two situations: at p > -1 the relaxation is infinitely long, while at 
p < -1 the fragmentation process speeds up and completes in finite time of the 
order of the very first breakup time. The latter resulis in a 'shattering' kinetic 
transition-part of the initial mass (energy) starts (formally) to accumulate at the low 
limit, x + 0. 

The solution (2.3) has a simple asymptotic form 121. Above shattering, at p > -1 
and x < xo, tx{+l > 1, it reduces to 

(the so-called similarity solution). Below shattering, at p < -1 and x < xOr 
> 1 we have 

The immediate question arises whether this solution is stable with respect to 
fluctuations, as has been said above. In other words, the issue is whether the 
solutions (2.3)-(2.5) can be seen in a single experiment. This question has been 
addressed mathematically by Filippov 121. We shall use a different method which 
allows us to derive equations for the entire distribution and its moments and obtain 
some explicit solutions together with their physical meaning. To the best of our 
knowledge the method employed goes back to unpublished works by Landau on 
cosmic showers (at the end of the 1940s) but has, since that time, been re-discovered 
by other researchers 1121 (there exist other methods making use of more standard 
approaches [ll]). In the method which we use one writes down the explicit equation 
for W(x,xO,t~ l ,xO,O)  in the form 
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which makes use of the fact that a shower (cascade) can be described in t e r m  of the 
very first act of decay and can be derived from the backward Chapman-Kolmogorov 
equation (see appendix A). (The linear terms take into account the situation when 
only the larger fragment can contribute to W(N,z , t~1 ,1 , , ,0 )  at given X,I < I,,.) 

The corresponding equation for the generating function 

G ( + , q , t ; z )  = MI(N,2,t11,10,0)exp(zN) (2.7) 
N 

reads 

( N k ( ~ , ~ o ~ ~ ) )  = a'GG(r,ro,f;z)/azki.=o (2.9) 

and the cumulants can be determined by the connection formulae, the first three of 
which are 

c, = ( N )  c2 = ( N ~ )  - ( N ) ~  c3 = ( N ~ )  - 3 ( ~ 7 ( ~ )  t 2 ( q 3 .  (2.10) 

From (2.8) the equation for the second moment is 

I O  

a,(N*(x,z~,t)) = - ( N Z ( r , ~ 0 , t ) ) J d  dyh'(y,xo) 

t 2 L c 0 d y  ~ ~ ( Y , ~ D ) W ? ~ , Y , ~ ) )  

+ 2 i x 0 - =  dY W Y ,  l O ) ( N ( X ,  Y >  t ) ) ( N ( x ,  To - Y ,  t ) )  ' (2.11) 

Higher equations can easily be written. 
Comments should be made about the normalization in the continuum limit. Since 

the probability IV is dimensionless together with all its moments, the continuum 
limit can be conveniently defined through the discrete version if we express all the 
mases in terms of the unit mass step of the discrete formulation. Then the increase 
of the number of discrete states affects the value of I,, and defines the continuum 
limit. This means that all powers of 6-functions should be considered as Kronecker 
symbols. 
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To investigate fluctuations, we solve (2.11) with the kernel (2.1) using the solution 
(2.3) for ( N ( z , x o , l ) )  as the Green function: 

At arbitrary p the corresponding integrals for the Kummer function are not known 
analytically, and the only anwer can be written in terms of multiple sums, which is not 
useful for further investigation. However, in the case p = 0 the exact answer is given 
in appendix C. Asymptotical behaviour is studied below. Namely, some progress can 
be made if we confine ourselves to the region of validity of (2.4), (2.5). Fluctuations 
are different above and below the shattering transition p = -1. 

21. Above shattering, P > - 1 
We return to (2.11) and use (2.4) to evaluate the inhomogeneity under conditions 
leading to the similarity solution (2.4) at I x0. The last term in (2.11) gives 

(2.13) 

The solution of (2.11) can be found to be in the form ( N 2 ( z , x O , t ) )  = safo(z,t).  
Plugging this ansatz into (2.11) one can see that it corresponds to the quasi-steady 
regime (a,f0 = 0) and finally in the main order 

(NZ(., zo, 1)) = (N(z ,"o ,  t v .  (2.14) 

This result can be directly found from (2.12): one notices that t' < 1, then integration 
over time can be performed with the first Kummer function, while the other two are 
to be replaced by the similarity solutions. Equation (2.14) suggests that the similarity 
solution corresponds to effective averaging of fluctuations. One can extend this 
statement by showing that to the same order the generation function is simply 

G ( z , z o , ~ ; z )  =exp{z(N(z,so, t ) )} .  (2.15) 

This can be done term by term after expanding the exponential (2.15) into series and 
using (2.8). However, to this order, there is no information whatsoever about the 
fluctuation amplitude, since all the cumulants above the first one are equal to zero. 

One can therefore compare then two different sources of corrections to (2.14). 
The first correction comes from the next order in the expansion of the Kummer 
function and exact limits of integration in (2.11). Denoting the similarity solution 
(2.4) as (No(  z, so, 1 ) )  we obtain 

(2.16) 
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Comparison of two terms on the right-hand side of (2.16) gives two different cases 
p > 1 and -1 < p < 1. These cases can be traced further in (2.11) with explicit 
account taken for the integration limits. In the former case one can use the ansatz 

S E Esipov et al 

which results in 

(2.17) 

(2.18) 

The latter case -1 < p < 1 requires the ansatz 

and gives 

(2.20) 

The second source of corrections is due to the fluctuations caused by the initial 
condition, which we have seen in the right-hand side of (2.12). It is simply equal 
to ( N ( z ,  xo, t)). Comparing both types of corrections one can easily check that the 
second type dominates. This can be traced for higher moments, and we get 

( N ” ( Z , ~ D , t ) )  = (flo(z,zo,t))n + (N(z , zo ,d ) ) .  (2.21) 

Fluctuations can be conveniently characterized by the signal-to-noise ratio, 
c,/e;/’, which to our approximation is just the square root of the mean-field solution. 
Therefore, near the m a x i ”  of the mean-field solution at d ,  = h - @ - l / ( p  f l ) ,  
we have C , / C : / ~  - z,,~-~. This ratio is large with respect to unity and indicates 
that eventually the cascade enters into a self-averaging regime. Computer simulation 
of the system considered here shows that numerically this averaging takes place 
at a rather late stage (or small enough x), where there appears a ’window’ with 
( N ( z , z o ,  t))  > 1. Outside of the window fluctuations dominate. From figure 1 we 
can see how small are the corresponding fragment sizes z. The third cumulant which 
describes the asymmetry of the distribution near ( N ( z , x D , d ) )  (sometimes we shall 
refer to this asymmetly as a non-Gaussian distribution) follows from (2.21) and to the 
mainorderisequalto c, = (N,(x,x,,t))-3(N,(~,x~,t))~. Atsmallandlarge times 
this difference is positive and the ratio c : / ’ / c ~ / *  is as large as ( N o ( ~ , q , , t ) ) - 1 / 6 .  
The third cumulant passes through zero near the edges of the window and is 
negative (and large again) inside the window, so that the mentioned ratio equals 
- 3 ’ / 3 ( N o ( r ,  zo, f))ll6. This behaviour is illustrated below on the example of the 
discrete model (see figure 3). 

Equation (2.21) explicitly shows the self-averaging at the late stage of branching. 
We did not study this self-averaging for multiple (triple, etc) fragmentation 
processes-its existence for slowing fragmentation was proven mathematically by 
Filippov [2]. 
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Figure 1. Solution of (2.12) for the sewnd moment with kernel (2.1) (at p = 0) plotted 
as the signal-to-noise ratio. For the analytic expression of the second moment, see 
appendix C. 

2.2. Below sliafrering, p < -I 
In this case fluctuations dominate. To show this we may evaluate the triple integral 
(2.12) using the asymptotical solution (2.5). Some study shows that the integral gains 
its value a t  z - y, t' - t ,  y - z0 if we assume tzf" - 1, about the maximum of 
occupation for a given I .  The result is 

( N * (  E ,  Io, t N z ; p - l ) )  N x-20-6 I O  2@+4 - ( N ( I > z o , t ) ) Z  (2.22) 

and the second cumulant is of the same order. One concludes that the signal-to- 
noise ratio is of order of unity here. The situation changes at p < -2, where 
( N ( s , z , , t ) )  << 1. Again the first term on the right-hand side of (2.12) (and the 
very first splitting) becomes important and fluctuations dominate strongly. The signal- 
to-noise ratio is as small as ( Z ~ / I ) ( ~ + ~ ) / ~ .  Finally, the mass of dust (which is defined 
as the initial mass minus the mass of all fragments with essentially positive mass, 
1 - J T d s  N ( I ,  zo, t ) )  is subject to the fluctuations mentioned. 

3. The steady-state regime 

As has been shown the fluctuations may be large and any observation makes sense 
only if the results are expressed in terms of the values averaged over a number 
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of independent repetitions, larger than c,/c:. In many physical systems (cosmic 
showers, electron, phonon transport) one deals instead with a source of incoming 
'particles' having the initial mass (energy) z0 and collects the outgoing fragments 
after many breakups. The question now concerns establishing the steady state in such 
an experiment and the minimum source intensity required to suppress the fluctuations 
which may still be present in the steady state. 

We shall introduce the simple procedure (analogous to [U]) which should provide 
such an averaging (steady state). At the very first state (I,,) there is assumed to be 
a constant discrete source of new 'particles', which produces new cascades with a 
time delay 'T between each two; this time is a random variable distributed with the 
Poisson probability P( 'T)  = The parameter i is inversely proportional to the 
source intensity. In ow system the evolution of each particle is independent, and the 
logarithmic generating function 2 = In(G) is an additive variable. If there exists a 
steady-state regime, these functions should be equal to 

S E Esipov et a1 

Here 'T, denotes the mth realization of the random value 'T. We can average the 
above-written sum over the diseibution P ( 7 )  to find 

d tZ(z , so , i ;z ) .  

Clearly, the same result is valid for the average properties of the same system with 
a periodic source where the period is i .  In the steady-state regime it is natural to 
work with cumulants (2.10), which are connected with the time-dependent cumulants 
due to (3.2) 

CO 

c n ( x , q )  = :/ dtc,(+,zo,t) .  (3.3) 
7 0  

The corresponding equations for moments can be derived from here. Note that the 
equations for the time-dependent cumulants (obtainable from (2.8)) allow one to 
reduce the integration in (3.3) to an integral equation, whose usage may sometimes 
be easier. For example, by integrating the backward kinetic equation over time from 
0 to CO we h d  the integral equation for cI (= ( N ) )  

cI(z.zo)[dyii(y,zo) = 2 r d y  J ~ ( y , q ) c l ( ~ , y ) .  (3.4) 

The equation for c2(z,s0) can be derived from (2.12), etc. The criterion on the 
minimum source intensity to have the signal-to-noise ratio large in the steady-state 
regime is given by I / i  > c2/c! and depends upon I, I,,. Below we set the timedelay 
constant i to unity-it can be easily retrieved by rescaling cumulants. 

The existence of the steady state is now connected with the convergence of the 
integrals (3.3). In principle it could happen that some of these integrals converge (that 
for c,, for example) but others do not. It does not take place for the linear systems 
considered here, since the maximum occupation occurs at finite time. Nevertheless, 
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we shall find that the time required to establish the steady state depends upon the 
order of the cumulants of distribution-the higher the order, the longer it may take 
for the corresponding integral to converge. The distribution under study is far from 
Gaussian, so that high cumulants may be of interest. Usually it is instructive enough 
to study the convergence for low-order cumulants c,, n = 1,2,3. 

To get some experience concerning the properties of different quantities it is useful 
to investigate in some detail the simple Yule-Ferry discrete model 1111 solved in the 
formulation following 1131. Namely, consider a set of generations n 2 0. One initial 
particle (n = 0) decays creating two particles in the first generation (breakup to hvo 
halves); each particle of this generation ( n  = 1) decays independently creating two 
particles in the second generation and so on. Let the probability W(N,n,t11,0,0) 
describe the presence of N particles in generation n at time t given there was one 
particle at the very beginning (cf section 2). The generating function for W is 

where we omit the indexes describing our initial condition. It obeys the equation 
(cf (2.8)) 

atG,(t ;r)  = -G,(t;z)+G:-1(t;z). (3.6) 

It follows that the equations for the first three moments of M' are 

at(Nn) = -(Nn) + '(Nn-1) 

at(N2) = -(N,Z) + 2(N2-1) t 2(Nn-1)' (3.7) 

at(N:) = -(N:) + ~(N:-I) + 6(N2-1)(Nn-1) 

where (Nk(t)) = dkGn( t ;  z ) / a z k  I=o. Equations (3.7) can be recurrently solved by 
using Laplace transform in time. h u t i o n s  for N1+ and N2," have been obtained 
in [13] by another technique. The Laplace transform with the initial condition 
(N,(O)) = 6n,0 gives us the Poisson-type solution for the occupation numbers 

2n 
n! ( N , ( t ) )  = -tne-t 

The maximum mean occupation at a given site n occurs after a time t = n. We 
would like to study how fluctuations affect this simple picture. The same transform 
gives the (rather cumbersome) solution for the mean square occupation number at a 
given site: 

(2m + I - 2)! tn-m-l 
n n-m (-1)Q"tm-l 2" n - t  ( N i ( t ) )  = -t e +e-' 

n! [(m - 1)!I2(n - m - [)!(()! 
na-1 I=O 

2m-2 (-l)"-m+l2n+m-'[2(m - l)]!(n - m + l)!t2m-,-z 
(n - m)![(m - 1)!]'(2m - I - Z ) ! ( l ) !  

m = l  l=O 

(3.9) 
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Figure 2. Signal-to-noise ratios at different sites n E [1,13] versus time in the simple 
cascade Yule-Ferry model. The arrow shows the increase of the generation number. 

Figure 3. Cubic root of thud cumulant divided by square root of second cumulant-the 
non-Gaussian properv of mpation numbers. Sites and times are as in figure 2 

1/2 . The signal-to-noise ratio c,/c2 IS shown in figure 2 The arrow indicates the 
increase of n.  In the discrete model, fluctuations are also small near the maximum 
of occupation for n > 1. Figure 3 shows the ratios c:/’/d/’ showing that fluctuations 
in our simple cascade are entirely non-Gaussian and non-symmetric. The behaviour 
of the third cumulant is quite rich and analogous to that found in section 2. The 
asymmetry is almost always large and is initially right-sided, then left-sided in the 
window, and finally right-sided again. 
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Figure 4. Steady-state oocupancies in the simple cascade model at different generations. 
R e  source intensity is unily. 

We return to the steady-state regime now. The steady-state occupation number 
for the generation n follows from (3.8) and (3.3): 

(3.10) 

As for the second cumulant, it is easier to make use of (3.7) and the equation for 
the second cumulant to find a recurrence relation for the steady-state cumulants 

The solution is given by the expression 

n-' 2"2k)! + E  k ! ( k +  l ) !  ' c+ = 2"-1 
k=O 

(3.11) 

(3.12) 

The ratios C~,~/C:!; and c:/:,/ci:; are shown in figure 4. The convergence of time 
integrals (3.3) for c1, c2, c3 1s shown in figure 5. We conclude that the steady-state 
regime is well defined in this model and fluctuations become less and less important 
with the generation number. However, the distribution is again non-symmetric around 
its maximum. It is also interesting that the time required for the third cumulant to 
converge is larger than that for c1, 9. 

Keeping the above results in mind let us return to continuum models with the 
random source acting at the initial point zo (section 2). The stationary solution of 
the kinetic equation can be found by either direct integration of its time-dependent 
solution (2.3) in ( 3 3 ,  or by solving the integral equation (3.4): 

(3.13) 
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Figure 5. Convergence of the fist ,  second and third cumulants to their steady-slate 
values from figure 4 at the site (generation) R = 13. 

which can be converted into a differential equation. The solution is 

c , ( t ,zO)  = 1,7~-'6(1 - I,,) + ~ I ~ I - ~ - ~ .  (3.14) 

-2, and it would take 
max(x-o-', xOp-'), for establishing such a distribution 

Integrating the expression for the second cumulant following from (2.21) one finds 

c*(z,zo) = C'(I,IO) (3.15) 

and, recalling the source intensity l/i, the steady-state signal-to-noise ratio is large 
at 

Note that the total mass of all finite fragments is infinite if p 
an increasingly long time, 1 
for small fragment sizes. 

at p > -1, z < z0 that 

I/+ w xp+3/x0. (3.16) 

In the region -2 < p < -1, x << xo the estimate (2.21) gives the x-independent 

(3.16) are again valid if I << I,,. 
ratio c l ( ~ , z 0 ) / c 2  112 ( 5 , ~ ~ )  - x;'/', and l/i > I,,. At p < -2 (3.15) and therefore 

4. Connection Rith the combinatorial approach 

We discuss here the connection between two different methods to study fragmentation 
processes which exist in the literature [3,16,17,6]. The alternative to the kinetic 
method is the approach (we caU it combinatorial) to declare that a given definite 
amount of fragments 7 is found in an experiment [6]. The problem would be 
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to dewibe what is the mass distribution of these observed fragments and then to 
compare it with the measurements. The solution leads to combinatorial analysis of 
how many ways ex& to get the same number m and what are their probabilities. 
The time passed does not play any role in the problem. 

Generally speaking, the combinatorial approach is artificial (a second experiment 
would give another number W') and does not reflect the proper behaviour of the 
system. While both approaches sample the phase space of the problem, the kinetic 
approach takes into account all the possible states, while the combinatorial one only 
takes care of those which have the same number 7 and it is clear that only the 
mean-field properties can be captured. Fluctuations are different. 

Indeed, Grady 161 implemented the combinatorial approach to study fragmenta- 
tion in the simple case of uniform breakup (0 = 0 in terms of kernel (2.1)). The 
distribution 

was obtained in the case of a continuous fmite body. For the same problem the 
solution (2.3) for p = 0 implies 

~ ~ o d r ' ( N ( r f , s o , t ) )  = (l-tx+ tx,,)e-'=. ( 4 4  

We expect the combinatorial approach to become meaningful only at large times 
or, equivalently, at small sizes (+ B 1, I e r0 
the asymptotic form follows Fexp(-xN/x,), which agrees with the asymptotic 
form tr,exp(-tr) for (4.2) if we establish the physically obvious connection 
t = x /xo .  Above shattering there is an equivalence between the regions of validity 
of combinatorial and similarity solutions. 

Below we shall address the abovementioned connection for the final or steady. 
state regimes. As time proceeds so does the fragmentation and finally a collection 
of objects of the smallest possible size would result. At this stage the system arrives 
at the final deterministic state. However, if one adds an additional rule that some of 
the intermediate fragments cannot proceed further, the final state may be distributed. 
Such an example is given by the random breaking of an interval studied by Derrida 
and Flyvbjerg [5]. In each binary breakup one of the two fragments is not allowed to 
proceed further and contributes to the final distribution. The other fragment breaks 
up and the scheme repeats. The model has very rich properties. 

Although time does not appear in this problem we shall show below how to 
introduce it and derive the Derrida and Flyvbjerg equation for the final distribution. 
Correlators of the distribution can also be obtained by the same method. Let 
P( N, I ,  tlr,,, 0) denote the probability density to have N fragments of size (mass, 
energy) I at time t given that the process starts with one 'particle' at I = z0, t = 0. 
By analogy with (2.6) the function P obeys the following (backward) equation 

zok Indeed, from (4.1) at 
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+ ;e - I (1 - 6N,0 ) [K( I ,  Io) t K ( x o  - I, Io)] G 1 
x [ P ( N  - l ,+,t lxo- I,O) - P ( N , x , t l x o  - s,O)] 

tfe(s-~)6N,l[Ii(",IO)+IC(10-I,Xo)l[1--P(N, r,tlzo-z,O)]. 

(4.3) 
Here the first integral on the right-hand side deals with the case when no breakup 
occurs at the very first state. The second and third integrals describe breakup when 
the f i t  fragments of size y and I,, - y contribute to the final distribution, while the 
complementary one proceeds further and may contribute to P later. There are special 
cases when the fragment y (or -I,, - y) arrives exactly at the point I and contributes 
explicitly to P. If I > x0/2, this is the only way for the point s to become occupied 
(multiplier SN,l), else the N argument of the P-function is changed to N - 1. T h e  
non-integral P-terms with minus signs take care of the situation when the exact arrival 
is contained in the integral terms, and should be excluded. 

The equation for the generation function defined by analogy with (2.7) reads 

t 3 t G ( ~ , t ~ ~ o , @ z )  = -G(z, t [zo,O;z) 

+ K ( z , - ~ ~ ) ( e ~ - l )  0 ---I G(z,tl-Io,O;z)+O -1-2 

(4.4) 
1 ( :)I 

where f((x,y)  = [ K ( s , y )  + K(y-z ,y ) ] /2 .  For the first moment (occupation 
numbers) we have 

at(N(r,4+o,0)) = -(N(r,t lz~,O))/ 0 dy &YY,xo) 
=0 

dyK(y , ro ) (N(z , t l~ ,O) )  + ~ ~ ' ( z , - I o ) .  (4.5) 
+ lo 

Omitting the time derivative we get the integral equation for the final distribution. If 
we consider the self-similar kernels k ( z , z O )  = K ( z / z 0 ) ,  then the final distribution 
also becomes self-similar, ( N ( z , z 0 ) )  = ( N ( s / x , ) ) .  Introducing the new variable of 
integration y = z0 - r, we get the equation equivalent to that obtained in [5]: 

Note, that the kernel IC( I) has to be necessarily symmetric as is shown above. This 
means that the solutions obtained in (51 for a non-symmetric kernel do not apply 
to the considered fragmentation process. Other characteristics of randomly broken 
objects [SI can be studied by this approach. 
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5. Fluctuations in phonon decay 

In this section we deal with the fragmentation process for the example of phonons. 
In order to be specific we consider the process of the phonon frequency down- 
conversion studied by Kazakovtsev and Levinson [7]. The physical situation is the 
following. A population of hot phonons is created in a semiconducting or insulating 
sample. Somewhere inside there is a device which measures (at least in principle) 
the energy distribution of the arriving low-frequency phonons. The energy evolution 
of each phonon eo is the familiar process of anharmonic splitting into two daughter 
phonons, e, eo - E ;  the conventional approximation for the kernel reads [7] 

IC(€, cO)  = Ae2(eo - e)’.  (5.1) 

If the occupation numbee (here in the quantum sense) are smaller than unity, the 
phonon cascade is linear, each phonon is independent. As for the space propagation, 
it can easily be included since the energy evolution is independent of that in space, 
and the problem is to ‘spread‘ the distribution in space in accordance to its energy 
content. 

We may therefore immediately make use of (2.11) which now reads 

€0 

a , ( ~ ~ ( e ,  = - ( W E ,  t i e o m  1 d 8  we‘, eo) 

where c is a number resulting from the presence of density of states, p ( ~ )  E e’. We 
make use of the similarity solution of the kinetic equation, which has the form [7] 

Here the normalization to one phonon is assumed, C = E ; / ~ ( E , ) V  with V being the 
normalization volume, and T I ( € )  is the inverse phonon lifetime, which is defined 
as $de’ IC( E ’ ,  E ) .  We deal here with the fragmentation above shattering, and may 
immediately apply the result (2.21) of section 2 

(N2(E,tleo10)) = ( N ( ~ ~ t l ~ o ~ 0 ) ) ~  t ( N ( E t t l € o i O ) )  (5.4) 

and corresponding formulae for higher cumulants. Here (N)  has the meaning of the 
number of phonons in a given ‘box’ U in space and p(  €)A€ in energy space. As has 
been said in section 2, the result (5.4) shows that fluctuations are not large around 
the maximum of the similarity solution (5.3), where v p ( e ) A e ( N )  > 1 and are given 
simply by the square root of t h s  average number of phonons in the box. These 
fluctuations are entirely non-Gaussian in the same sense as we have explained above. 



802 S E  Esipov et a1 

6. Conclusion 

We have presented the application of the kinetic approach of backward equations 
to the study of different systems evolving along tree-like paths in the phase space 
(Bethe lattice, Cayley tree and ultrametric manifold are the other names used). For 
the systems below the shattering threshold our results show that fluctuations dominate 
and the mean-field solution can be 'measured' only by using the given large number 
of repetitions. For larger systems, the fluctuations are exceedingly strong if they 
dominate. We have shown that the similarity solution is the result of seU-averaging 
along the branching cascade if it slows down. The steady-state regime with an external 
source has been considered, which may suppress fluctuations even below shattering 
due to the presence of many particles proceeding simultaneously. We have also shown 
that the combinatorial and kinetic approaches provide equivalent results only for very 
simple models in the mean-field approximation. Exact solutions have been given for 
some models. The results obtained for the slowing-down fragmentation have been 
used to study the phonon frequencydown conversion. 
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Appendix A 

We present here the formal derivation of our basic equation of (2.6) type for the 
discrete Yule-Ferry cascade model. The continuous case of (2.6) can be treated in an 
analogous way. Let us introduce the vector of stale N = {No, NI, N,, . . . , N,,,  . . .} 
which describes the occupation numbers at the sites 0,1,2,. . . ,n,. . . . The 
probability of the system having a given state N at time i provided it has had the state 
N' at time t' is denoted as P(N,  tlN', t ').  It is connected with the 'short' description 
W(N,n,tll,O,O) due to the reduction relation 

W(N,n , t11 ,0 ,0)  = P(N,flI,O) 
an N k ,  k#n 

where I = { l , O , O ,  . . .}. The probability P obeys the forward and backward 
Chapman-Kolmogorov equations [ll]. The forward equation is equivalent here to 
the master equation and can be written as 

atP( N, t lN' ,  t ' )  = [w( N" -+ N)P(N" , ilN', i') - Y(N + N") P( N, ti", t ) ]  
all N" 
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where w(N + N') is the transition rate from the state N to the state NI. In our case 
it is equal to N ,  for the transition when the occupation number N ,  diminishes by 
one and the next generation occupation number N,,, increases by two, and is zero 
otherwise. We apply the reduction formula (Al) attempting to derive a closure for 
the 'short' description and immediately find that the sum 

C ( N , - , + l ) P ( I  ..., N , - , + L N , - 2  ,... 1,tl ...I 
"-1 

which appears in the first term on right-hand side of (AZ) where summation over 
all N ,  have been performed except for k = n - 1, does not reduce to the short 
description, because we cannot perform the last summation in terms of W functions. 
One can see that the forward time equation always generates the higher-order 
correlators. 

The situation is quite different for the backward Chapman-Kolmogorov equation, 

a,,P(N,tlN',t')  = w(N'-N")[P(N,tIN[,t')-  P(N,tIN",t)] .  ('44) 
all N" 

Applying the summation (Al) and the above-mentioned transition rate w we derive 
the equation analogous to that of Williams [12], 

which with the help of the identity 
a,,W(N,n,tll,O,O) = W(N,n,tll,O,O) - W(N,n , t12 ,1 ,0 )  (As) 

W ( N , n , t 1 2 , 1 , 0 )  = W(N',n,tl l , l ,O)W(N- N',n,t11,1,0) ('46) 
" 

the change of a,, = -at, shifting the argument ( N ,  n, t l l ,  1,O) +( N ,  n-1, tll,  O,O), 
and using the generation function representation (3.5) gives (3.6). 

Appendix B 

In the case of more than binary fragmentation the generalization of (2.8) is straight- 
forward. Let us first write down the equation for the triple fragmentation; the 
triple kernel 1C3(z,y,zo) describes the breakup rate of the initial particle zo 
into three fragments z, y, zo - z - y, the corresponding symmetry is assumed: 

& G ( ~ , x p , t ; z )  = - G ( r , ~ o , t ; ~ )  

+ 
+ 
+ 
+ 

'DG(z,z',i;z)G(z,y',f;z)G(x,xo - z' - y ' , t ; z )  

DG(z ,  y', t ;  z)G( z, zo - z' - y', t ;  z )  

VG(z ,  z', t ;  z)G(z,  x,, - z' - y', t ;  z )  

'DG(z, z', 1;  z)G(z ,  y', f ;  z )  

J 
J 
s 
J 
J J J + 'DG(z,d,t; z)+ 'DG(z ,y ' , t ;~ )+  'DG(z ,zo-~ ' -y ' ,  t ; z )  

(B1) 
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where 2) = dx'dy'K3(x', y', xo). The integration regions should be organized in 
such a way that all the second arguments (of G-functions being integrated) have to 
lie between x and xo - x altogether. For example, the integral containing the triple 
product of G-functions is to be performed over the region {r' a +, y' 2 I, x' t y' < 
z0 - x}. All the integration regions are supposed to be positive. 

It is simple to modify (Bl) for k-pieces breakup. There is the main k-product 
of all G-functions and subsequent terms describing that only some of the k-pieces 
(those which have sizes from x to xo in all the possible combinations) can contribute 
to the distribution at the point x. 

The next step is to take the sum of all these equations for arbitray k and fiially 
compute the time derivative of the generation function, 

S E Esipov et a1 

m 

d, G( +, EO, a; Z )  = 8, G, (I, 20, t; . (B2) 
k=2  

Although this equation is rather cumbersome, the corresponding equations for the 
moments simplify considerably. For example, studying the first moment, we have to 
take the first derivative of (B2) with respect to z. This gives the backward kinetic 
equation 

at(N(+,+o, t ) )  = -(N(r,xo,l))Jd'rodYIC(N)(Y,"o) 

+ ~ x o d Y l C ~ N ) ( y , l o ) ( N ( 2 , y , t ) )  (B3) 

with the first effective kernel 
I O  

 EO) = 2 J { 2 ( ~ , ~ 0 )  f 3 J d  dyi f \ ; (+,~,xo)  + ... 
+ ( n  + 2) /. , . I d y l  . , .dy, ICn+2(+, Y I ,  . . . , yn,  XO) + ". (B4) 

where the integration is performed over the region of non-negative {y,, . . . , y,,} 
satisfying the condition x t yl t . 1 t yn 6 xo. 

% ( N 2 ( ~ ~ ~ o , ~ ) )  = - ( N 2 ( Z , Z o , t ) ) 1  dYL(N)(Y,+o) 

The second moment (N2) obeys the following equation: 
=0 

+ Sn0dY K(N)(Y> xo)(Nz(x* Yd)) 
I 

+ lxo-= dyK(,)(y, z o ) ( N ( z ,  Y, ~ ) ) ( N ( Z , ~ O  - ~ , i ) )  (B5) 

with the second effective kernel 
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having the same rules for the integration region as (B4). Therefore, the power- 
law assumption [3] for the first argument = of the kernel K ~ , ) ( x , x o )  does not 
specify higher-order effective kernels, except for the case of bmary fragmentation. 
An independent power-law assumption can be made for K~, , , 2 ) (x ,x0 )  following 
Filippov. 

Appendix C 

The solution for the second moment ( N 2 ( x ,  xO,  t ) )  in the case p = 0 can be obtained 
from (2.12) by inserting into it the first moment (2.3) which now reads 

( N ( x , x 0 , t ) )  =e-tzo6(x-  x o ) + t ( 2 +  t ( x , , - ~ ) ) e - ' ~ .  (C1) 

The following expression results by applying a symbolic manipulation program: 

( N 2 ( ~ , x o , t ) )  = ( N ( x , x o , t ) ) +  t 2 ( 6 -  1 2 t ~ + 4 t ~ x ~ + 6 t x ~ - 4 t ~ x ~ ~ +  t2xi)e-2tz  
(C2) 

where z < x 0 / 2 .  In the region x > x 0 / 2  the second moment is not affected 
by the inhomogeneity in (2.11) and is just equal to the first moment. Note that 
the continuum limit corresponds to xo >> 1. However, at any finite xo there are 
discontinuities in ( N 2 ( x ,  xo ,  i)), i.e. at G = z 0 , x O / 2  the latter one becomes small at 
large xo. 

If we subtract ( N ( X , X , , ~ ) ) ~  from ( N 2 ( x , x o , t ) )  given by (C2) (or simply by 
( N ( x , x o ,  a ) )  at x > x0 /2 )  and integrate over time, we obtain the steady-state value 
of the second cumulant 

2 x 0 / x 3  - 1 / 4 z 3  - 3xi /4x5  

2xo/x3  - 1 /4z3  - 3xo/4x4 
x > x 0 / 2  

x < x 0 / 2  
(C3) C d X ,  xo) = 

where the first term in both of the expressions (C3) results from the integration of 
( N ( x , z O , t ) )  over time. 
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